LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

THIRD SEMESTER – APRIL 2023

MT 3501 - ALGEBRA, CALCULUS AND VECTOR ANALYSIS

Date: 02-05-2023 Dept. No. Time: 01:00 PM - 04:00 PM

Section A

 $(10 \times 2 = 20)$

 $(5 \times 8 = 40)$

Max.: 100 Marks

- Answer ALL questions:
- 1. Evaluate $\int_0^2 \int_1^x xy dy dx$.
- 2. Identify the value of $\int_0^{\pi/2} \sin^7 \theta \cos^5 \theta \, d\theta$.
- 3. Obtain a partial differential equation by eliminating *a*, *b* from z = (x + a)(y + b).

4. Solve
$$\frac{\partial z}{\partial r} = 0$$

- 5. Find $\nabla \varphi$, if $\varphi = xyz$.
- 6. State Stroke's theorem
- 7. Find the Laplace transform of sint.
- 8. Determine $L^{-1}\left[\frac{1}{s^2-9}\right]$.
- 9. Obtain the number of divisors of 360.
- 10. What is the remainder when 2^{1000} is divided by 17?

Section B

Answer any FIVE questions:

- 11. Given that x + y = u, y = uv, change the variables to u, v in the integral $\iint (xy(1 x y))^{1/2} dx dy$ taken over the area of the triangle with sides x = 0, y = 0, x + y = 1, and evaluate it.
- 12. Determine the value of $\iint (a^2 x^2) dx dy$ over half the circle $x^2 + y^2 = a^2$ in the positive quadrant.
- 13. Solve $p^2 + q^2 = npq$.
- 14. Obtain the complete integral of the partial differential equation pxy + pq + qy = yz.
- 15. Use Green's theorem and evaluate $\int_C (xy + x^2) dx + (x^2 + y^2) dy$, where C is the square formed by the lines x = -1, x = 1, y = -1, y = 1 in the *xy*-plane.
- 16. Find the Laplace transform of $f(t) = \begin{cases} 0, & when \ 0 < t \le 2\\ 3, & when \ t > 2 \end{cases}$
- 17. Find the highest power of 3 dividing 1000! .
- 18. Show that if *n* is a prime number and *x* and *y* are both prime to *n*, then $x^{n-1} y^{n-1}$ is divisible by *n*. Also, deduce that $x^{12} - y^{12}$ is divisible by 1365.

Section C	
Answer any TWO questions:	$(2\times 20=40)$
19. (a) Change the order of integration and find the value of $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy dy dx$.	(15 marks)
(b) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma functions.	(5 marks)
20. (a) Solve the partial differential equation $p(1 + q^2) = q(z - 1)$.	(8 marks)
(b) Find the general solution of $(y + z)p + (z + x)q = x + y$.	(12 marks)
21. (a) If $\vec{v} = \vec{w} \times \vec{r}$ where \vec{w} is a constant vector and $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, show that $\frac{1}{2}curl\vec{v} = \vec{w}$.	
	(5 marks)
(b) Verify Gauss-Divergence theorem for $\vec{F} = (x + y)\vec{i} + x\vec{j} + z\vec{k}$ taken over the region bounded by the	
planes $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$.	(15 marks)

22. (a) Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = sint$ given that $y = \frac{dy}{dt} = 0$ when t = 0. (15 marks) (b) State and prove Wilson's theorem. (5 marks)

\$\$\$\$\$\$\$