LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2023

MT 3501 - ALGEBRA, CALCULUS AND VECTOR ANALYSIS

Date: 02-05-2023
Dept. No. \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

Section A

Answer ALL questions:
$(10 \times 2=20)$

1. Evaluate $\int_{0}^{2} \int_{1}^{x} x y d y d x$.
2. Identify the value of $\int_{0}^{\pi / 2} \sin ^{7} \theta \cos ^{5} \theta d \theta$.
3. Obtain a partial differential equation by eliminating a, b from $z=(x+a)(y+b)$.
4. Solve $\frac{\partial z}{\partial x}=0$.
5. Find $\nabla \varphi$, if $\varphi=x y z$.
6. State Stroke's theorem
7. Find the Laplace transform of sint.
8. Determine $L^{-1}\left[\frac{1}{s^{2}-9}\right]$.
9. Obtain the number of divisors of 360 .

10 . What is the remainder when 2^{1000} is divided by 17 ?

Section B

Answer any FIVE questions:
11. Given that $x+y=u, y=u v$, change the variables to u, v in the integral $\iint(x y(1-x-y))^{1 / 2} d x d y$ taken over the area of the triangle with sides $x=0, y=0, x+y=1$, and evaluate it.
12. Determine the value of $\iint\left(a^{2}-x^{2}\right) d x d y$ over half the circle $x^{2}+y^{2}=a^{2}$ in the positive quadrant.
13. Solve $p^{2}+q^{2}=n p q$.
14. Obtain the complete integral of the partial differential equation $p x y+p q+q y=y z$.
15. Use Green's theorem and evaluate $\int_{C}\left(x y+x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the square formed by the lines $x=-1, x=1, y=-1, y=1$ in the $x y$-plane.
16. Find the Laplace transform of $f(t)=\left\{\begin{array}{lr}0, & \text { when } 0<t \leq 2 \\ 3, & \text { when } t>2\end{array}\right.$
17. Find the highest power of 3 dividing 1000!.
18. Show that if n is a prime number and x and y are both prime to n, then $x^{n-1}-y^{n-1}$ is divisible by n. Also, deduce that $x^{12}-y^{12}$ is divisible by 1365 .
19. (a) Change the order of integration and find the value of $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2 a-x} x y d y d x$.
(b) Express $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of Gamma functions.
20. (a) Solve the partial differential equation $p\left(1+q^{2}\right)=q(z-1)$.
(8 marks)
(b) Find the general solution of $(y+z) p+(z+x) q=x+y$.
21. (a) If $\vec{v}=\vec{w} \times \vec{r}$ where \vec{w} is a constant vector and $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$, show that $\frac{1}{2} \operatorname{curl} \vec{v}=\vec{w}$.
(b) Verify Gauss-Divergence theorem for $\vec{F}=(x+y) \vec{\imath}+x \vec{\jmath}+z \vec{k}$ taken over the region bounded by the

$$
\begin{equation*}
\text { planes } x=0, x=1, y=0, y=1, z=0, z=1 . \tag{15marks}
\end{equation*}
$$

22. (a) Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\operatorname{sint}$ given that $y=\frac{d y}{d t}=0$ when $t=0$.
(15 marks)
(b) State and prove Wilson's theorem.

\$\$\$\$\$\$

